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When I had these points determined, in order to investigate the 
others, I heated a large enough block of iron until it was 
glowing, and taking it from the fire with a forceps while it was 
glowing I placed it at once in a cold place where the wind was 
constantly blowing… 
        —Isaac Newton (A Scale of the Degrees of Heat, 1701) 

 
 
  Summary 
 
In general, objects cool by one or more of four different processes:  conduction, convection, 
evaporation, and radiation.  While Master of the Royal Mint at a time well before the 
principles of thermodynamics were established, Isaac Newton published an anonymous 
paper creating a practical temperature scale based on the rate of cooling of an iron block.  
Some 300 years later my son and I performed variations of the ‘hot block’ experiment in 
our kitchen and found that ‘Newton’s Law of Cooling’ did not work well.  Our own 
thermodynamically-derived law of cooling fits the data much better. 
 
  

 
‘The Heat of a Little Kitchen Fire…’ 
 
 The rate at which an object cools gives valuable information about 
the mechanisms of heat loss and the thermal properties of the material.  In 
general, heat loss occurs by one or more of the following four processes:  
(a) conduction, (b) convection, (c) evaporation, and (d) radiation.   
 
 In conduction heat is transferred through a medium by the 
collisional encounters of thermally excited molecules vibrating about their 
equilibrium positions, or, in the case of metals, by mobile, unbound 
electrons; only energy, not bulk matter itself, moves through the material.  
Convection, by contrast, refers to the transfer of heat through the action of 
a moving fluid; in free or natural convection, the motion is principally the 

result of gravity acting on density differences resulting from fluid expansion.  Evaporation entails the loss 
of heat as a consequence of loss of mass, the faster-than-average molecules escaping from the free surface 
of a hot object, thereby removing kinetic energy from the system.  Last, radiation involves the conversion 
of the kinetic and potential energy of oscillating charged particles (principally atomic electrons) into 
electromagnetic waves, ordinarily in the infrared portion of the spectrum.  From the perspective of 
classical physics, charged particles moving periodically about their equilibrium positions (or indeed 
undergoing any kind of acceleration) radiate electromagnetic energy. 
 
 Although the physical principles behind the four mechanisms lead to different mathematical 
expressions, it is widely held that, if the temperature of a hot object is not too high, then the decrease in 
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temperature in time follows a simple exponential law, an empirical result historically bearing Newton’s 
name.  But how good an approximation to reality is Newton’s law—and what in any event determines 
whether the temperature of the hot object is too high?  Furthermore, although Newton’s name is readily 
associated with his laws of motion, law of gravity, and various optical phenomena (e.g. Newton’s rings, 
Newton’s lens equation), it does not usually appear in discussions of thermal phenomena.  Indeed, apart 
from this one instance, a search through a score or more of history of science books and thermal physics 
books at various levels of instruction produced but one other circumstance for noting Newton’s name—
and that was his failure to recognise the adiabatic nature of sound propagation in air. Newton’s 
calculation of the speed of sound in air lacked the specific heat ratio ! , which reflects the fact that heat 
cannot be exchanged between a sound wave and ambient medium within the duration of one period 
(reciprocal of the sound frequency).  The error was subsequently corrected by Laplace.  It is to be 
emphasised, however, that Newton pursued his interests at a time long before the concept of heat was 
understood.  He died in 1727, but the beginning of a coherent system of thermal physics might arbitrarily 
be set at nearly a hundred years later when Sadi Carnot published (1824) his fundamental studies on ‘the 
motive power of fire’ (La puissance motrice du feu).   
 
 What, then, prompted Newton to study the rate at which hot objects cool, how did he go about it, 
and where did he record his work?  
 
 Let us look at the historical questions first.  In stark contrast to Newton’s other eponymous 
achievements, for which anyone desirous of knowing their origins could turn to such ageless sources as 
Principia or Opticks,1 the paper recording the law of cooling is decidedly obscure.  After much searching, 
I discovered a reprinting of this elusive work in an old and dusty physics sourcebook.2  According to the 
author, William Francis Magie, the paper, ‘A Scale of the Degrees of Heat’, was published anonymously 
in the Philosophical Transactions in 1701 although Newton was known to have written it.   
 
 Despite its obscurity, this is, like much of Newton’s work, a fascinating paper.  In contrast to 
what I expected, Newton’s principal concern was not to nail down the precise formulation of another 
physical law, but rather to establish a practical scale for measuring temperature.  By 1701, Newton, then 
about 60 years old, had long since completed the fundamental studies of his youth—motion, gravity, the 
calculus, spectral decomposition of light, diffraction of light, and much else—to take up the position of a 
British functionary.  In 1695 he had been appointed Warden of the Mint and moved from Cambridge to 
London; four years later he became Master of the Mint.  It seems reasonable to speculate that Newton’s 
concern with temperature and the melting points of metals was motivated by his responsibility for 
overseeing the purity of the national coinage. 
 
 All the same, the experiment was vintage Newton:  clever use of the simplest available materials 
to carry out a measurement of broad significance.3  Having selected linseed oil—which has a relatively 
high boiling point (289 °C ) for an organic material—as his thermometric substance, Newton presumed 
that the expansion of the oil was linearly proportional to the change in temperature.  With this 
thermometer and a chunk of iron heated by the ‘coals in a little kitchen fire’, Newton proceeded to 
establish what quite possibly was the first temperature scale by which useful measurements were made.  
He set 0 on his scale to be ‘the heat of air in winter at which water begins to freeze’ and defined 12 to be 
                                                
1Sir Isaac Newton, Principia , Motte’s translation into English, revised by Cajori (University of California Press, 
Los Angeles, 1966);  Opticks , based on the Fourth Edition London, 1730 (Dover, New York, 1952). 
2W F Magie, A Sourcebook in Physics, (McGraw-Hill, New York, 1935), 125-128.  The paper is briefly cited—but 
with no mention of the law of cooling—in Richard Westfall’s biography of Newton, Never at Rest,  (Cambridge, 
London, 1980) 527.  The citation is:  Scala graduum caloris, Philosophical Transactions, 22 (1700-1701), 824-829. 
3For additional discussion of Newton's experimental genius, see M P Silverman, Waves and Grains: Reflections on 
Light and Learning (Princeton University Press, Princeton, 1998), Chap. 5: Newton's Two-Knife Experiment. 
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‘the greatest heat which a thermometer takes up when in contact with the human body’.  On this fixed 
two-point scale the ‘heat of iron...which is shining as much as it can’ registered the value 192. 
 
 Having established the above points, as well as other intermediate values (e.g. 17: ‘The greatest 
heat of a bath which one can endure for some time when the hand is dipped in it and is kept still’4), 
Newton sought an independent procedure for confirming their validity.  To do this, 
 

... I heated a large enough block of iron until it was glowing, and taking 
it from the fire with a forceps ... I placed it at once in a cold place...and 
placing on it little pieces of various metals and other liquefiable bodies, 
I noted the times of cooling until all these bodies lost their fluidity and 
hardened, and until the heat of the iron became equal to the heat of the 
human body.  Then by assuming that the excess of the heat of the iron 
and of the hardening bodies above the heat of the atmosphere, found by 
the thermometer, were in geometrical progression when the times were 
in arithmetical progression, all the heats were determined. ... The heats 
so found had the same ratio to one another as those found by the 
thermometer. 
 

And thus Newton's law of cooling first saw light of day.   
 
 In fact, that small section above is all that Newton had to say about ‘Newton’s law’.  Note that 
not once in the entire paper does Newton mention the word ‘temperature’.  At this time the concepts of 
heat and temperature were poorly understood and confounded; Newton refers to both as ‘heat’ (calor in 
Latin).  Note, too, that nowhere does Newton mention the word ‘exponential’ or give the equation of 
exponential form 
  T !T0 = (Tm !T0 )e

! k t  (1) 
 
(with rate constant k, ambient temperature T0 , and maximum temperature Tm ) that explicitly shows the 
temporal variation synonymous with Newton’s law.  However, in verifying the points on his scale, 
Newton asserted that ‘the heat which the hot iron communicates in a given time to cold bodies...is 
proportional to the whole heat of the iron’—or, as one would express mathematically in modern 
symbolism 
 
  dT / dt = !k(T !T0 ) . (2) 
 
Equation (1) is the solution to Eq. (2), and from (1) the reader will readily confirm that 
 

  
 

T1 !T0

T2 !T0

=
T2 !T0

T3 !T0

=
T3 !T0

T4 !T0

= … = ek" t  (3) 

 

                                                
4If 12 degrees Newton °N( )  corresponds to body temperature (37 °C ), then the hottest sustainable bath of 17 °N  
corresponds to 52 °C .  Newton's value is actually quite good.  While living in Japan, I experienced total immersion 
in the skin-searing temperatures of Japanese baths fed by hot springs.  The hottest of such baths in Japan is said to be 
in the town of Kusatsu and is recorded at 57.8 °C . 
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where the temperatures T1, T2 , T3, ...  are all measured at equal intervals of time ( t1 = ! t , 
t2 = 2! t , t3 = 3! t ...).  This is the ‘geometrical progression’ of temperatures (above the ambient 
temperature) when the times are in ‘arithmetical progression’, which Newton assumed. 
 
 The law is simple and useful.  But is it true?  This question came to mind at a time when I was 
teaching my son Chris physics and calculus during his senior year of high school, and so we investigated 
the matter together. 
 
 
The ‘Hot-Block’ Experiment 
 
 ‘It is certain’, wrote Benjamin Thompson (Count Rumford) at the opening of his own seminal 
paper on the flow of heat5, ‘that there is nothing more dangerous in philosophical investigations than to 
take any thing for granted, however unquestionable it may appear, till it has been proved by direct and 
decisive experiment’.   Thus inspired, Chris and I retired to our kitchen to test, as best we could, the law 
governing the cooling of a hot block of iron.   
 
 As a substitute for the block of iron and Newton's open kitchen fire (which surely would have 
invalidated our home insurance policy), we used, instead, an electric range and turned the right rear 
burner on HI so that it ‘was shining as much as it can’.  The ambient temperature was measured to be 
25.5 °C  with a mercury-in-glass thermometer, which we also used to calibrate a digital thermocouple 
thermometer [Extech Model 421305; ambient operating range 0-50 °C ; measurement range –50-1300 
°C ; resolutions of 0.1 °C  and 1 °C  depending on range] placed in contact with the burner.  The glowing 
burner registered 456 °C , which would appear to be somewhat cooler than Newton's kitchen fire.  Given 
the common origin 0 °C  for the freezing point of water and linearity of the Newton scale, it follows that 
37 oC
12 oN

=
456 oC
x oN

 or x = 148 (and not 192) on the 

Newton scale.  All the same, it was hot enough 
to test Newton's law. 
 
 Turning the range off, we 
simultaneously activated a stop-watch and 
recorded the temperature of the burner at 
intervals of one minute for a total of 35 
minutes, at which time it approached ambient 
temperature closely enough to terminate the 
experiment.  The temperatures, measured to a 
precision of 1 °C  for T ≥ 200 °C  and 0.1 °C  for 
T < 200 °C , are plotted with small circles in 
Figure 1.  It is convenient and instructive to plot 
the data as dimensionless quantities.  The 
vertical axis gives the ratio of the instantaneous 
temperature to the ambient temperature, all 
temperatures being in Kelvin.  The horizontal 
axis registers the time in units of a characteristic 
‘radiation time’ tr , which in this experiment 

                                                
5This paper (‘Convection of Heat’), among other Rumford writings, is also to be found in Magie's Sourcebook (146-
161).  
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was found to be 25 minutes.  The dashed line in the figure is the exponential curve (i.e. Newton's law) 
obtained as a least-squares fit to the data.  The fitting procedure, performed with statistical software on a 
Macintosh computer, minimised the the sum of the squares of the deviations of a straight line from the 
natural logarithm of T !T0 , which, according to Eq. (1), should be a linear function with slope –k and 
intercept ln(T !Tm ) .   
 
 It is clear that Newton's law does not represent very well the mechanism of heat loss.   If not 
Newton's, then what law governs the physics at work here?   
 
 Under the conditions of this experiment—initially glowing solid iron in (for the most part) 
stationary air—the principal mode of heat loss is radiation until the reduced temperature T /T0  has fallen 
to about 1.2.  The net rate dQ / dt  at which a hot body immersed in an ambient medium of temperature 
T0  loses energy by radiation is given by Stefan's law6 
 

  
dQ
dt

!
"#

$
%& rad

= '() A T 4 'T0
4( )  (4) 

 
in which !  is the emissivity of the material, ! = 5.67 "10#8 W/m2-K4 is the universal Stefan-Boltzmann 
constant, A is the effective radiating area, and T is the absolute temperature.  The negative term on the 
right-hand side is the radiant power lost to the environment; the positive term is the radiant power 
received from the environment.  A general thermodynamic argument can be given (although not here) that 
the material parameter !  must be the same for both radiant emission and absorption.  Note that the rate of 
radiant energy loss is proportional to the fourth power of T whereas in Newton’s law [Eq. (2)], it is 
proportional to the first power of T.  [Under the present circumstances, Eq. (2) corresponds to net cooling 
by conduction, as will be seen shortly.] 
 
 When an object radiates an amount of energy dQ, the drop in temperature dT depends linearly on 
the mass m and specific heat capacity c of the material 
 
  dQ = mcdT . (5) 
 
(There should be no confusion of c with the vacuum speed of light, which does not appear at all in this 
paper.)  Upon substitution of Eq. (5) into Eq. (4) and division of both sides of the equation by T0 , Eq. (4) 
takes the dimensionless form 
 

  
 

dT
d!

= 1"T 4  (6) 

 
with reduced temperature  T ! T T0  and reduced time ! " t tr , the characteristic radiation time referred 
to earlier being defined by 
 

  tr =
mc

!"AT0
3 . (7) 

 

                                                
6See, for example, R A Serway and J S Faughn, College Physics Fifth Edition (Saunders, New York, 1999) 356 
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 Equation (6) no longer explicitly contains material properties or physical constants and can be 
solved readily by separating variables, decomposing the right-hand side into a sum of rational terms 
 

  
 
d!  = dT

1"T 4  = 1
4

dT
1"T

+
dT

1+T
+

2dT
1+T 2

#
$%

&
'(

 (8) 

 
and applying the elementary integration formulas for the natural logarithm and inverse tangent.  This 
leads to the implicit relation for  T  
 

  
 

T !1
T +1

"
#$

%
&'
 = T m !1

T m +1
"
#$

%
&'
e!2 arctanT m!arctanT( ) e!4(  (9) 

with  T m = Tm T0 . 
 
 With a little additional effort, it is not difficult to reduce Eq. (9) to an approximate explicit 
relation for  T (! ) .  Combine the two phase terms into a single phase by using the trigonometric identity7,  
 

  arctan x + arctan y = arctan x + y
1! xy

"
#$

%
&'

, 

 
make the small-argument ( x <1 ) approximations arctan x ! x  and ex !1+ x , and carry through the 
algebraic manipulations to isolate  T (! ) , obtaining 
 

  
 
T !( ) = 1+ 2 T m "1( )(T m

2 " 2T m + 3)
T m

2 +1( ) T m +1( )e4! "T m +1#$ %& " 4 T m "1( ) . (10) 

 

Applied to Eq. (9), the small-argument approximation implies that 
 

T m !T
T m

2 +1
<<1 , which is best fulfilled 

when  T  is close to its maximum value.  In other words, we would expect the relation (10) to describe 
radiative heat loss well and to become progressively poorer as the temperature approaches ambient 
temperature (in which case radiation becomes secondary to conduction).  In contrast, it is to be noted that 
when  T  is close to the ambient temperature ( T ~ 1), the radiative cooling law takes the form of 
Newton's law, for Eq. (6) becomes approximately  
 

  
 

dT
d!

= 1"T( ) 1+T( ) 1+T 2( ) # " 4 T "1( ) . (11) 

 
 Looking again at Figure 1, one sees that this expectation is indeed borne out.  The solid curve, 
which closely matches the experimental points, is calculated from Eq. (9) with the radiation time tr  ~ 25 
minutes the only adjustable parameter.   Figure 2, in which  loge (T !1)  is plotted against τ, shows the 
experimental results from another perspective.  Clearly the locus of experimental points (small circles) is 
not linear.  [Actually, the log of the log of  T  makes a nearly straight line.]  The solid line, Eq. (9), 
follows the experimental points up to about 0.8 tr  units of time, after which conduction sets in and pure 
radiation theory is no longer adequate.  Note, however, that the log function greatly exaggerates what are 
                                                
7This follows readily from the more familiar expression tan(a + b) = tan a + tanb( ) 1! tan a tanb( ) . 
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actually small discrepancies between 
theory and experiment since (for any base 
a) loga (x)!"# as a !  0.    The dashed 
line is the least-square linear fit leading to 
the exponential curve in Figure 1. 
 
 From Eq. (7) and the empirical 
radiation time we can estimate the 
emissivity of the burner.  Employing the 
physical quantities  m = 0.263 kg, A = 
0.056 m2 , T0 = 299 K, c = 448 J/kg.K, 
and tr  = 25 min into (7), we obtain ε ~ 
0.91, which is quite reasonable for an 
object with blackened, oxidized surface.  
By comparison, the emissivity of soot is 
0.95 and that of flat black paint is 0.94.8 
 
 How is it possible that Newton, 
who started out with an even higher 
temperature than we did, obtained ‘Newton's law’, i.e. an exponential decrease in temperature?  Actually, 
who can say with certainty that he did?  His short paper contains no experimental record at all of the 
variation in temperature of the hot iron with time.  He states, but does not demonstrate, that ‘the heat 
which the iron loses in a given time is proportional to the whole heat of the iron’.   Moreover, no 
information is given as to how Newton measured intervals of time, no mean task in an age when an 
inexpensive digital wristwatch (our own chronometer) did not exist. 
 
 Last and conceivably most significant, Newton did something with his hot block that we did not 
do with our burner:  He removed it from the fire and ‘placed it...where the wind was constantly blowing’.  
Newton did this specifically so that ‘equal parts of the air are warmed in equal times and carry away a 
heat proportional to the heat of the iron’.  Forced convection, which played no role in our own 
experiments, would have provided an additional cooling mechanism. 
 
 
Study in Black and White 
 
 In any event, having satisfied ourselves that our own hot-block experiment could be accounted 
for satisfactorily by Stefan’s law rather than by Newton’s law, we enquired next into the consequences of 
both conductive and radiative energy loss occurring together.  It is of particular interest to ascertain 
whether the effects of radiation are perceptible over a temperature range sufficiently low that heat loss is 
dominated by conduction, and to determine whether, in fact, Newton’s law provides a good model under 
these circumstances. 
 
 The rate at which a hot object initially at maximum temperature Tm  loses heat by conduction 
across a region of thickness d bounded by a surface of area A is described adequately by the relation 
 

  
dQ
dt

!
"#

$
%& con

= '
kT A
d

T 'T0( )  (12) 

                                                
8E Hecht, Physics: Algebra/Trig Second Edition  (Brooks/Cole, New York, 1997) 1020. 
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where kT  is the coefficient of thermal conductivity of the material.  Use of Eq. (5)  in (12) to relate again 
dQ  and dT results in the dimensionless equation 
 

  
 

dT
d!

= 1"T  (13) 

 
where now (and for the rest of this paper) we define the reduced time ! " t tc  in terms of the 
characteristic ‘conduction time’ 

  tc =
mcd
kT A

. (14) 

 
 The form of Eq.(13) is precisely that of Newton's law, and the solution is 
 
   T = 1+ T m !1( )e!" , (15) 
 
or equivalently (in terms of original variables) Eq. (1) with rate constant k identified with tc

!1 . 
 
 To test relations (13)-(15) on a system 
for which conduction ought ideally to be the 
only significant cooling mechanism, we cut a 
small rectangular block of white Styrofoam 
and covered it with a thin wrap of aluminium 
foil for which the emissivity is very low (ε ~ 
0.02).  Highly reflective surfaces by definition 
do not absorb radiation, and poor absorbers 
make poor emitters, a fact that often seems 
paradoxical to those encountering it for the 
first time.  We inserted the digital thermometer 
probe down the long axis of the block and set 
the block (fastened vertically to a chemical 
stand) into a pot of water.  When the water was 
boiling vigorously and the display of the 
thermometer registering 100 °C , we removed 
the block from the water, set the stand on the 
kitchen counter (in the absence of wind!), and 
recorded the temperature with resolution of 
0.1 °C  in intervals of one minute as before.  
The experimental points are plotted with small 
circles (upper data set) in Figure 3.  The solid 
line through the circles is the exponential 
curve calculated from Eq.(15) and leads to a 
conduction time tc  = 5.3 minutes.  
 
 That the value obtained for tc  is reasonable may be seen by substituting into Eq. (14) the 
appropriate parameters for our Styrofoam block: m = .02 kg, c = 1226 J/kg.K, d = .006 m, A = .0132 m2, 
kT  = .029 W/m.K.  The theoretical result is 6.4 minutes. 
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 In the second part of the experiment, 
designed to enhance the effects of radiation 
without changing any other property of the 
system, we simply painted the foil surface 
black, using flat lamp-black paint which to a 
large extent is an oil emulsion of soot.  That the 
blackening of the surface markedly effected the 
cooling rate is shown by the locus of diamond 
plotting symbols (lower data set) in Figure 3.    
 
 It is important to note (although the 
graph does not show it) that an exponential fit 
to the ‘black’ data is as poor as before.  The 
dashed line in Figure 3 is an exponential curve 
parametrically adjusted (not fit) to match 
visibly well the overall pattern of data points.  
That even this attempt is poor can be seen in the 
logarithmic plots of Figure 4.  Newton's law 
does not work particularly well here.  How, 
then, can we account for these results?   If not Newton's nor Stefan's, then what or whose law applies?   
 
 By combining the radiation law (4) and the conduction law (12) together with the temperature-
heat relation (5) one obtains the following dimensionless cooling law 
 

  
 

dT
d!

= 1+ "( )#T # " T 4  (16) 

 
in which the parameter !  is the ratio of the conduction and radiation times 

  ! =
tc
tr
=
"# dT0

3

kT
 . (17) 

 
Although Eq. (16) may look more-or-less tractable, 
it cannot be integrated analytically to yield an exact 
closed-form expression.  Nevertheless, it can be 
integrated numerically, and Figure 5 shows a 
sequence of cooling curves, solutions of Eq. (16) 
obtained with the symbolic computation software 
Maple, showing the transition from pure conduction 
with γ = 0 (i.e. Newton's law) to strong radiation 
with γ = 1.  A discussion of the numerical 
procedure, which is one of the Runge-Kutta 
methods, would take us too far afield but can be 
sought in appropriate mathematical reference books 
or “help” files of symbolic computational software 
like Maple.  
 
 It is also possible to derive an approximate 
solution to Eq. (16) which works quite well in the 
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low-temperature regime, i.e. when  T m  is not much in excess of one.   In that case we treat the radiative 
part of (16) (i.e. the terms containing ! ) by the approximation in Eq. (11) to obtain an exponential 
solution of the form of (1), but now with rate constant k = 1+ 4! .  This approximation is then substituted 
back into (16) to obtain, after some patient effort, the interesting expression 
 

   T = 1+ (T m !1)e
!" e

!
a
k 1!e

! k"( )  (18) 
 
with 

 
a = 4! 1+ 3

2 T m "1( )#$ %& .  Note that Eq. (18) involves the exponential of an exponential, a law 
ostensibly quite different from Newton's or Stefan's law. 
 
 The solid line through the ‘black’ data in Figures 3 and 4 is the theoretical curve calculated from 
Eq. (18) using the same value of tc  as obtained for the ‘silvery’ data, since the rate of heat conduction is 
determined by the conductivity of the Styrofoam and should not be significantly affected by a thin layer 
of surface paint.  Theory and experiment are in excellent accord when γ, the only adjustable parameter, 
takes the value 0.21.  Then, from Eq. (17), with T0  = 301.1 K, we find the emissivity of the block to be 
about ε = 0.7.   
 
 
Concluding Remarks 
 
  The investigations described in this paper, as I have already noted, were initially undertaken as 
part of a high school physics course emphasising the inclusion of meaningful research opportunities (in 
lieu of ‘cook-book’ laboratory exercises) in accord with my philosophy of self-directed learning.9  By 
collaborating as partners in an endeavour of mutual interest, both student and teacher acquired some 
useful lessons in the workings of science and the intricacies of history.   
 
 Puzzled by frequent reference in math and physics books to a law of Newton's of whose origin we 
knew nothing, and by the apparent unquestioning credence with which the law was reported to hold 
widely, we tracked down Newton's paper.   To our surprise we found that, far from demonstrating a 
physical law, the investigation of cooling, whose corroborative details Newton did not even bother to 
report, was to Newton solely an auxiliary procedure in the more important task of creating a practical 
temperature scale.  A procedure, moreover, that, for all one can tell from the written account, was based 
on a mathematical relation that Newton merely assumed to be true.  
 
 As to the validity of Newton's law, however, our own kitchen experiments indicate that, where 
energy loss by radiation contributes significantly—even when the temperatures involved are relatively 
low—an exponential variation does not make a particularly good model.  Exceptions to Newton's law are 
not hard to find.  The cooling of a hot burner on an electric range is very well accounted for by Stefan's 
law.  The cooling of a piece of black Styrofoam—an object with high emissivity and low thermal 
conductivity—is accounted for by ‘the Silvermen's law’ [if I may so call Eqs. (16) and (18)].   
 
 And therein lies perhaps the most useful lesson of all:  Abide Rumford's advice, and you cannot 
go too far astray for too long. 

                                                
9 M P Silverman, “Self-directed learning: A heretical experiment in teaching physics,” Am. J. Phys. 63, 495- 508 
(1995). See also M P Silverman, Waves and Grains: Reflections on Light and Learning (Princeton University Press, 
1998), Chapter 15. 


