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 Enjoy the Good Sound of CokeTM —The Art of Modeling by Analogy 
 
 M. P. Silverman 
 
[Adapted from M. P. Silverman, A Universe of Atoms, An Atom in the Universe (Springer 2002), first 
published as a cover article in The Physics Teacher 36 (1998) 379-387 with co-author E. R. Worthy]  
 

Whoever wishes to acquire a deep acquaintance with Nature 
must observe that there are analogies which connect whole 
branches of science in a parallel manner, and enable us to infer 
of one class of phenomena what we know of another. 
           —William Stanley Jevons, Principles of Science (1874) 

 
 
  Summary 
 
There is a certain satisfaction that comes from understanding the behaviour of familiar objects. Who 
has not blown air across a bottle to make a musical sound?  As a source of sound, a Coke bottle may 
resemble a curvy open-ended organ pipe—but that would be a completely erroneous way to think of 
it.  Bizarre as it may seem, I show that a Coke bottle is more accurately modeled as an electrical 
circuit with inductance and capacitance.  Tested experimentally by one of my students, the model 
closely reproduces the relation beween the resonant sound frequency and level of water in the bottle. 
 
 
 

Sounds and Circuits 
 
 In the lighthearted, madcap African satire, The Gods Must Be 
Crazy, a Coke bottle, nonchalantly tossed from the cockpit of an airplane, 
landed in the midst of an isolated Bushman family never before exposed 
to the familiar commodities of ‘civilisation’.  Of the many uses the family 
found for this mysterious ‘heaven-sent’ gift, among the most pleasing was 
that of a musical instrument.  (As the story unfolded, however, there were 
other less pleasing attributes—and the 
resourceful Bushman went to great 
lengths to return the gift and recover his 
peace of mind.)  By teaching courses 
based on what I have called ‘self-
directed learning’1—the radical 

proposition that students learn science better when striving to answer 
questions that arise out of their own curiosity—I have often been led to 
explore imaginative avenues of physics that would not likely have 
occurred to me, had it not been for the curiosity of some student.  In this 
way I, together with a student colleague (E. R. Worthy), likewise came 
to realise that a Coke bottle—or, more precisely, about ten bottles 
containing different volumes of water—does indeed make a splendid 
instrument. Yet, surprisingly, for so superficially simple a structure, the 

                                                
1 M. P. Silverman, (a) Self-Directed Learning:  A Heretical Experiment in Teaching Physics, American Journal of 
Physics 63 (1995) 495; (b) Self-Directed Learning: Philosophy and Implementation, Science & Education 5 (1996) 
357, (c) Problem-Based Learning and Self-Directed Learning, What Works II:  Postsecondary Education in the 21st 
Century (Penn State University, State College PA, 1996). 
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tones of the bottle are by no means easily accounted for.  For my student and me, as for the Bushman, the 
Coke bottle has not been drained of all its mystery. 
 
 To exploit the musical properties of the Coke bottle (or any other bottle) as an acoustic resonator, 
one must determine the relationship between the fundamental frequency f and the length of the air 
column ! .  Despite the overall cylindrical symmetry of the bottle, the problem is a challenging one—and 
within the elementary physics literature that my student and I surveyed we encountered no discussion of 
the issues involved beyond the standard geometric depiction of axial standing waves in tubes of constant 
cross section.  As shown in Figure 1 for the case of a tube sealed at one end (like the Coke bottle), each 
longitudinal mode has a displacement node at the closed end and (to good approximation) a displacement 
antinode at the open end.  The lowest-frequency mode, therefore, has a wavelength  ! =

1
4 ! , from which it 

readily follows that the fundamental frequency is 

  
 
f = vs

4!
 (1) 

 
where vs  is the speed of sound, which is about 344 m/s at a pressure of 1 atm and temperature of 20 °C .   
 
 From the shape of a Coke bottle, illustrated in 
Figure 2a, one might think that the ‘organ pipe’ of Figure 1 
would serve as a useful model for predicting the 
fundamental frequency.  This, however, is far from the case.  
Nevertheless, a relatively simple approach that avoids 
solving the differential equations of wave theory can be 
made by analogy between an acoustic resonator and the 
ordinarily more familiar elements of ac circuit analysis.  A 
comprehensive wave analysis of acoustic systems leads to 
equations of the same form as those of ac circuit theory 
when the lengths of individual components are small 
compared with a wavelength of sound.  Justification of this 
assertion is by no means trivial, but is demonstrated in 
advanced books on theoretical acoustics.2  From such a 
comparison we find that  
 
 (a) the gauge pressure (the difference between 
actual and equilibrium air pressures) in the acoustic system 
corresponds to the voltage at a point in the circuit;  
 
 (b) the air flow (volume/time) through an orifice 
corresponds to the electric current;  
 
 (c) a short narrow tube (a constriction) of length  ! c  
and cross section Sc  is equivalent to an inductance (termed 
the analogous inductance) 
 
  La = !! c Sc  (2) 
 

                                                
2L. L. Berenek, Acoustics (McGraw-Hill, New York, 1954) 128-143; P. M. Morse, Vibration and Sound (American 
Institute of Physics, New York, 1976) 233 ff. 
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in which !  is the mass density of air (~1.2 kg/m3 at 1 atm and 20 °C );   
 
 (d) a broad tube (a tank) of length  ! t  and cross section St  is equivalent to the analogous 
capacitance 

  
 
Ca =

St! t
!vs

2  , (3) 

and  
 
 (e) radiation of sound (of angular frequency ! ) from a constriction opening into free space 
constitutes an analogous terminal resistance  

  Ra =
!" 2

2#vs
.  (4) 

 
 One further refinement is necessary to make the model correspond more closely to reality.  
Because the antinode of a standing wave in a tube actually lies a little above the open end, we should 
replace  ! c  in Eq. (2) by an effective length  
 
   ! e = ! c + 0.8 Sc   (5) 

 
that depends on the size of the opening.  The correction, which is not 
necessary for the (much larger) tank, shows that even a flat aperture 

 ! c = 0( )  contributes an analogous inductance. 
 

In circuits that obey Ohm’s law, the potential difference V 
across a circuit element and the current I that flows through the element 
are linearly related, V = IZ , in which the coefficient of proportionality 
Z = R + iX  is called the impedance, comprising a real part (resistance) 
and an imaginary part (reactance).  If the element dissipates energy as 
heat, then Z is just the familiar real-valued resistance R.  However, the 
element may store energy in an electric field (or equivalently as charge 
on conducting plates) or in a magnetic field (or equivalently as current 
through a solenoid), in which case Z is a purely imaginary-valued 
capacitive or inductive reactance.  A real circuit element may exhibit 
both resistance and reactance to varying degrees depending on the 
frequency of the electromagnetic signal it is carrying. 
 

 With the preceding relations, a wide variety of acoustic systems (bottles, horns, reed instruments, 
strings, loudspeakers, etc.) can be modeled in terms of their electrical counterparts.  Now, let us examine 
the Coke bottle. 
 
 
The AC Circuit Model of a Coke Bottle 
 
 To an approximation sufficient for the purposes of this discussion, the Coke bottle (8 fluid 
ounces) of Figure 2a comprises a short neck inserted into a longer tank, a structure known as a Helmholtz 
resonator.  Blowing across the mouth of the bottle excites the air inside to vibrate, but only those 
vibrations at the resonant frequencies of the bottle are amplified.  Unless the bottle is ‘overblown’, it is 
principally the fundamental tone that one hears, and it is this tone alone that we want to predict.  If we 
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neglect energy dissipation at the open end and at the walls, the bottle can be modeled by the ac circuit of 
Figure 3 containing a capacitor (of capacitance C) and inductor (of inductance L) in series.  A series LC 
circuit exhibits a complex impedance Z = i(XC ! XL )  in which  
 
  XC = 1 !C  (6) 
is the capacitive reactance and 
  XL =!L  (7) 
 
is the inductive reactance for an applied harmonic signal of angular frequency ! .  If the capacitive and 
inductance reactances are equal, then the impedance of the circuit vanishes.  From Eqs. (6) and (7) it 
follows that this resonance condition occurs at the frequency 
 

  f = !
2"

=
1

2" LC
 . (8) 

 
 Substitution of relations (2) and (3) and effective length (5) into Eq. (8) leads to the following 
expression for the fundamental frequency of a cylindrical bottle 
 

  

 

f !=! vs
2!

Sc
St! e! t

!=! vs a
2! b

1

! c + 0.8a !( )! t
 (9) 

 
with a and b the radii of the mouth and the base of the bottle, respectively.   Since a, b, and  ! c  are fixed 
parameters for a particular bottle, Eq. (9) expresses the fundamental frequency f as a function of the 
variable tank length  ! t = ! ! ! c , where  !  is the full length of the air column.  Thus, in marked contrast to 
Eq. (1) for the constant-diameter organ pipe in which  f ! !

"1 , the fundamental of the bottle should vary 

as  ! ! ! c( )!1/2 . 
 
 Now the Coke bottle, whose radius varies smoothly from mouth (a ~ 1.4 cm) to base (b ~ 3 cm), 
is not strictly speaking a Helmholtz resonator which, technically, comprises two joined tubes each of 
constant radius.  How, then, is one to decide where the constriction ends and the tank begins?  A good 
rule, supported by examination of the equations characterising wave propagation in the bottle, is as 
follows:  Take  ! c  to be the distance from the mouth to the point where the second derivative of the bottle 
shape is maximum.   Briefly, the wave equation for sound produced by the bottle differs from the 
comparable equation for an organ pipe only by a term containing this second derivative.  Although small 
in magnitude and effectively applicable only over a small segment of the bottle length, this term is 
responsible for the marked difference in acoustic behaviour between the bottle and the organ pipe.   
 
 As an illustration, look at Figure 2b, which depicts a mathematical simulation of the Coke bottle 
obtained by rotating the curve  

  y(z) = 1.6 tanh
z !18( )3
216

"

#
$

%

&
' +1.4  (10) 

 
(with radius y and length z in cm) about the symmetry axis.  Apart from the acoustically unimportant 
shallow indentation near the base in Figure 2a, the generatrix (10) provides an accurate representation of 
the size and shape of the Coke bottle.   Eq. (10) was obtained by trial and error, guided by the ‘principle 
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of simplicity’ to select the simplest curve that makes a smooth transition between the mouth and base.  
The desired sigmoid shape almost cried out for a hyperbolic tangent; the third power of the argument best 
reproduced the curvature of the bottle in the critical region where constriction joins tank.  Figure 2c shows 
the variation with length of the generatrix (curve A) and its first derivative (curve B) and second 
derivative (curve C).  The location of the positive maximum value of curve C establishes that  ! c " 3.5  
cm. 
 
 Upon substituting into Eq. (9) the preceding Coke-bottle parameters and the speed of sound in air 
at room temperature, One obtains the final relation 
 

  
 
f = 1089

! ! 3.5
 Hz (11) 

 
for fundamental frequency f (in Hz) as a function of air column  !  (in cm). 
   
 
The Sound of Coke 
 
 So, what is the ‘sound’ of Coke?  To test the 
predictive accuracy of my model, Eqs. (9)-(11), my 
student measured the frequency of the tones obtained 
by blowing across the mouth of a Coke bottle filled to 
different levels of water.  In keeping with the spirit of a 
home-based project to be performed with apparatus 
more or less readily available outside the physics 
laboratory, the resonant frequencies of the bottle were 
measured by means of a guitar tuner calibrated against 
a well-tuned piano.  Water levels were sought for 
which the tuner registered standard notes, which were 
then converted to the corresponding frequencies.  
Heights were measured to within 0.1 cm, and the 
experimental uncertainty in frequency is estimated 
from the intervals of the guitar tuner to be less than 
(21/48 !1)  times the frequency of middle C, or 
approximately 4 Hz. 
 
 Figure 4, which gives results for both the Coke bottle and a right-circular cylinder closed at one 
end,  summarises the outcome of these experiments.  It is readily seen that the observed frequencies of the 
Coke bottle bear out very well the ac circuit resonator model, and that a model of the bottle as an organ 
pipe is in thorough disagreement with experiment even though the curvature of the Coke bottle is 
relatively small (as shown in Figure 2c).   
 
 For the reader interested in the musicality of the bottle, the 
table to the right records the water levels (in cm) required to 
produce notes needed for various popular tunes.  The designation 
C4  is ‘middle C’ on the tempered scale, nominally corresponding 
to a frequency of 261.6 Hz.  Each succeeding half-tone (C#, D, 
D#, E, etc.) in the octave between C4  and C5  is theoretically 
higher in frequency than the preceding half-tone by the factor 
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2
1
12 = 1.0595 .  Music, however, is not a precise science like physics, and a musician will play tones the 

way they sound best.  The water levels that produce the notes listed above correspond only approximately 
to the frequencies of the tempered scale. 
 
Two familiar tunes played by my student to the class on a set of Coke bottles were 
   

• ‘Mary Had a Little Lamb’: 
o EDCDEEE DDD EGG EDCDEEE EDDEDC 

 
and 
 

• ‘Jingle Bells’:   
o EEE EEE EGCD E FFF FEEEE EDDE DG 
o EEE EEE EGCD E FFF FEE GGFD C 

 
 
 Although a general discussion of environmental effects on the tones of the Coke bottle would 
take us too far afield, the temperature T is sufficiently important to consider briefly here.  All other 
parameters remaining unchanged, the increase in sound velocity vs  with T would raise the pitch of the 
bottle, as shown explicitly in Eqs. (1) and (9).  However, raising T causes both the glass container and 
water contents to expand, thereby changing the length of the air column.  Since the volume coefficient of 
expansion of water ( 2.1!10"4 per °C ) is greater than that of glass (~1.1!10"5  per °C  for Pyrex), an 
increase in temperature should lead to a shorter air column and therefore to a higher pitch.   In our 
experiments we measured the variation in frequency as a function of temperature and found overall an 
increase of 22 Hz (approximately the interval of one note) over the range of 85 °C —a change 
corresponding to a net rise in water level of about 1 cm. 
 
 Since a Coke bottle is not of uniform diameter, the change in water level (and therefore the length 
of the air column) engendered by a given volume expansion will have greater consequence where the 
bottle is narrow than where it is wide.  Thus, temperature variations will affect more severely those 
pitches in the higher octaves than in the lower ones. 
 
 
Art of Modeling 
 
 Although much of the physics that excites a student’s imagination may often pertain to exotic 
realms far from daily reality (like black holes, time travel, and the fate of the universe),  there is also a 
certain satisfaction that comes from being able to understand the behaviour of familiar objects.  Learning 
physics, I believe, is greatly facilitated when teachers can convey an appreciation for the power of general 
physical principles to account for what students frequently experience, yet rarely understand. 
 
 It may turn out as well—and such is the case with the Coke bottle—that for all its familiarity a 
superficially simple object hardly worth noting may pose a daunting challenge.  In such instances the use 
of analogy provides a powerful strategy.  If science, as Nobelist Peter Medawar has written, is the ‘Art of 
the Soluble’3, then the art of that art is modeling, the capacity to exploit threads of commonality between 
outwardly dissimilar systems to arrive at a partial understanding of a complex and puzzling phenomenon.  
Moreover, in this art of modeling what best serves as a model system can be surprising, at least to the 
uninitiated.  Without prior experience very few students—even physics graduate students—would look at 
                                                
3P. B. Medawar, The Art of the Soluble (Methuen, London, 1967). 
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a Coke bottle and see a resonant LC circuit rather than the structurally closer counterpart of an organ pipe
 But analogy is not identity—and what a model omits from first consideration may yet prove 
decisive to deeper enquiry.  The study of the humble Coke bottle is by no means a closed book.  For 
example, if the bottle were of soft plastic, then a gentle deformation by squeezing would damp out the 
fundamental tone.  Why?  Is this the ineluctable consequence of broken cylindrical symmetry?  No, for 
hard glass bottles of highly elliptical cross section render strong fundamental tones.   (Try blowing across 
an empty maple-syrup bottle.)  The simple resonator model does not explain this. 
 
 On the other hand, one might ask why the LC circuit model works as well as it does.  In a 
puzzling reversal of expectations, I was initially astonished to discover that supposedly more 
sophisticated mathematical models of acoustic resonators that treated the bottle as a continuous 
transmission line with no arbitrary division between neck and tank predicted fundamental tones less 
accurate than those of the cruder resonator model with lumped circuit elements.  How can this be?    It 
must suffice here to say only that to understand variable-diameter resonators like a Coke bottle in all their 
complexity constitutes a study of three-dimensional waves including both radial and longitudinal modes 
of air vibration as well as the elastic properties of the vessel walls.  The investigation is a fascinating one, 
but not recommended for the mathematically fainthearted. 
 
 From the perspective of experiment, however, the ready availability of personal computers with 
microphones and sound-analysing software makes it possible to explore the acoustic properties of bottles 
and other simple resonators in great detail.  It is an excellent way to learn about waves and vibrations in 
familiar systems with mysteries yet to be explored. 
  
 
 
 
 
 
 
 
 
 
 


