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Hence the velocity of light deduced from experiment 
agrees sufficiently well with the value of v deduced from 
the only set of experiments we as yet possess.  The value 
of v was determined by measuring the electromotive 
force with which a condenser of known capacity was 
charged, and then discharging the condenser through a 
galvanometer, so as to measure the quantity of 
electricity in it in electromagnetic measure.  The only 
use made of light in the experiment was to see the 
instruments. 

James Clerk Maxwell (1864)1 
 
The Problem and the Solution 
 
 Despite the enormous success of Augustin Fresnel's wave theory of light, there remained a 
fundamental and thorny issue:  If light were a kind of undulation, then what, precisely, was "waving"?    
 
 The answer to this question was discovered by Scottish physicist James Clerk Maxwell not in 
optics but in the study of remotely connected phenomena of electricity and magnetism.  Deeply impressed 
by the experimental researches of Michael Faraday, Maxwell set out to give mathematical structure to 
Faraday's geometrical conception of a continuum of lines of force permeating the space between 
electrified and magnetised bodies.   It is perhaps hard to imagine today—when nearly all theoretical 
physics is a study in field theory—how bold was Faraday's idea and how much resistance it incurred from 
contemporary scientists and mathematicians.  "I was aware," wrote Maxwell in the preface to the first 
edition of his Treatise on Electricity & Magnetism,2, "that there was a difference between Faraday's way 
of conceiving phenomena and that of the mathematicians, so that neither he nor they were satisfied with 
each other's language."  
 

"For instance, Faraday, in his mind's eye, saw lines of force traversing all 
space, where the mathematicians saw centres of force attracting at a 
distance: Faraday saw a medium where they saw nothing but distance: 
Faraday sought the seat of the phenomena in real actions going on in the 
medium, they were satisfied that they had found it in a power of action at 
a distance impressed on the electric fluids." 
 

                                                
1J. C. Maxwell, "A Dynamical Theory of the Electromagnetic Field", reprinted from The Transactions of the Royal 
Society  155 (1865) in The Scientific Papers of James Clerk Maxwell (Dover, New York, 1952) 526-597; quotation 
from p. 580 
2J. C. Maxwell, A Treatise on Electricity & Magnetism , Vols 1 and 2 (Dover, New York, 1954) republication of 
unabridged 3rd Edition, published by the Clarenden Press in 1891 
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 Like Fresnel, Maxwell lived a regrettably short time, dying of cancer at the age of 48 in 1879.  He 
began his investigations of electromagnetism in the mid 1850's with the resolve to read Faraday's 
Experimental Researches in Electricity, and by the mid 1860's, through what is perhaps the most 
remarkable application of modeling by analogy of which I know, he arrived at his definitive dynamical 
theory of the electromagnetic field.   In contrast to André-Marie Ampère, whom he greatly admired and 
of whom he wrote 
 

"We can scarcely believe that Ampère really discovered the law of 
[magnetic] action by means of the experiments which he describes.  We 
are led to suspect...that he discovered the law by some process which he 
has not shewn us, and that when he had afterwards built up a perfect 
demonstration he removed all traces of the scaffolding by which he had 
raised it." , 
 

Maxwell revealed all the interim steps in his own progress toward perfection.   
 
 In the first step3, convinced of the conceptual fertility of Faraday's lines of force, Maxwell 
likened them to streamlines in a hydrodynamic model of incompressible tubes of electric and magnetic 
fluids.   One insightful outcome of these considerations, which was to become a seminal part of the final 
theory, was Maxwell's distinction between a vectorial "quantity", associated with the flux of a field 
through an area, and a vectorial "intensity", associated with the circulation of a field about a closed path.    
 
 In the second step4, he devised an extraordinary mechanical model whereby space-filling 
molecular vortices and idle wheels transmitted pressures and tensions representative of electrical and 
magnetic interactions, in particular the interaction between current-carrying wires (Ampère's law) and the 
induction of an electromotive force by a change in magnetic flux (Faraday's law).  From this hypothetical 
construction Maxwell deduced the existence of transverse waves propagating at a speed determined by 
the elasticity and density of the matter of the vortices (the aether)—which, when evaluated, very nearly 
equaled the speed of light as it was then known (~3.15∞108 m/s).  
 
 In the final step1, Maxwell displayed the architecture of his own edifice with the scaffolding 
removed (as Ampère had done from the outset without benefit of "blueprints"), and presented in their 
awe-inspiring entirety the mathematical relations that account for all (non-quantum) electromagnetic 
phenomena.   "The agreement of the results," wrote Maxwell, "seems to shew that light and magnetism 
are affections of the same substance, and that light is an electromagnetic disturbance propagated through 
the field according to electromagnetic laws."  Thus, within the span of roughly 10 years Maxwell effected 
a theoretical synthesis that not only brought electricity, magnetism, and optics under the same set of 
mathematical laws, but which was to provide the exemplar for virtually all other field theories of modern 
physics.    
 
 To the question 'What is "waving"?', Maxwell's theory provided the answer: an electromagnetic 
field.  But of this, two things must be said.   
 
 First, though Maxwell's answer is correct and complete and nothing further is actually required, 
the question still remained troubling, for it was just as inconceivable to Maxwell and his contemporaries, 
as it had been to Huyghens, Newton, Young, and Fresnel, that an undulation could propagate through 

                                                
3J. C. Maxwell, "On Faraday's Lines of Force", reprinted from the Transactions of the Cambridge Philosophical 
Society,  Vol 10, Part 1 (1855-56) in The Scientific Papers of James Clerk Maxwell (Dover, New York, 1952) 155-
229 
4J. C. Maxwell, "On Physical Lines of Force", reprinted from The Philosophical Magazine  21 (1861-62) in The 
Scientific Papers.. op. cit.. 451-513 
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space in the absence of a material medium.  The search for a luminiferous aether consequently remained a 
pressing issue throughout Maxwell's lifetime and in fact until well after Einstein had effectively disposed 
of it in his 1905 paper on special relativity5.   Imagine a substance that had to pass freely through the 
atoms of matter (to account for the aberration of starlight viewed through a telescope), yet must be a 
nearly incompressible elastic solid (if it were to transmit high frequency transverse waves); a substance 
for which was claimed a negative modulus of compression so that it expanded under pressure and 
contracted when relaxed (!); a substance that now, to satisfy electrodynamics, was riddled with tubes of 
electric and magnetic flux.  If you can not, then you are in good company, for neither could anyone else.   
 
 Second, to the distress of many future generations of physics students, Maxwell's theory did not 
give rise to a single field—or even to two (electric and magnetic)—but rather to at least four which in 
modern notation and terminology are: E (electric field), D (electric displacement), B (magnetic 
induction), and H (magnetic field).  Actually, the symbolic designations are exactly those Maxwell had 
chosen (although he expressed them in Gothic letters), and the nomenclature is only slightly modified 
from the original; Maxwell termed E the "electromotive intensity" and H the "magnetic force".    
 
 Although E and D, and likewise H and B, are conflated in the absence of matter, their conceptual 
distinctions as "intensities" and "quantities" are vital, and their properties in matter are sufficiently 
different that one must always exercise caution when referring to "transverse" waves of light.  For 
example, in an anisotropic dielectric medium devoid of free charge and current, "quantities" D and B are 
transverse to the wave vector k (which is normal to the wavefront), whereas "intensities" E and H are 
transverse to the Poynting vector S (which gives the direction of power flux).  S and k, however, need not 
be parallel to one another, with the consequence that the wavefronts are not transverse to the direction in 
which light energy is transported.  Little things like this make crystal optics a fascinating subject for the 
devoted—or an ordeal to the geometrically impaired. 
 
The Confusing Matter of Units 
 
  Having accomplished his immortal work, Maxwell retired from a professorship at King's 
College, London, in 1865 to write A Treatise on Electricity and Magnetism that should have "for its 
principal object to take up the whole subject in a methodical manner, and which should also indicate how 
each part of the subject is brought within the reach of methods of verification by actual measurement."  It 
is this concern of Maxwell's, not only with theoretical foundations, but with concrete experimental details 
(without which all science reduces to mere opinion) that has influenced so profoundly my own scientific 
education and research.    
 
 Although a significant fraction of my physics pursuits fall within the purview of electrodynamics, 
I have never had a course in the subject beyond an elementary introduction.  Instead, as with most of the 
physics I learned, I studied the principles on my own—in this case with Maxwell's Treatise as both my 
inspiration and textbook.  This is not an experience that I would necessarily recommend to others.   For 
all his legendary gentleness, Maxwell is a demanding teacher, and his magnum opus is anything but 
coffee-table reading.  He wrote at a time when vectors—introduced by William Rowan Hamilton as part 
of a long and largely opaque work on quaternions—were understood by only a handful of physicists.  
And, although Maxwell was among this select group and introduced vector terminology into his 
Treatise—indeed it was he who created such familiar terms as "curl", "gradient", and "divergence"—he 
nonetheless preferred to express vectorial relations in their Cartesian components, each component 
distinguished by a different letter rather than a subscript.   This did not make reading Maxwell any easier. 
 

                                                
5A. Einstein, "On the Electrodynamics of Moving Bodies", Annalen der Physik  17 (1905) 891-921    
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 All the same, the experience was greatly rewarding in that I had come to understand, as I realised 
much later, aspects of electromagnetism that are rarely taught at any level today and that reflect the 
unique physical insight of their creator.     
 
 One of the most important of these, in regard to the relationship of electromagnetic waves to 
light, concerns the delicate subject of electromagnetic units.    Few topics, I have found, seem more 
obscure or less interesting to students and professional physicists alike (except perhaps to those at 
standards laboratories), and yet more likely to trigger heated discussion over preferences. At the 
introductory level, it would appear from perusing any number of general physics textbooks that the SI 
(Système Internationale)  set of units has swept all others from the field, and so students begin their 
studies of electricity and magnetism by cluttering their minds with mysterious symbols—epsilon-naught 
(ε0 ) and mu-naught (µ0 )—which are purely concocted numbers that have, in fact, no basis in natural 
law.  Some time later perhaps, students will encounter in more advanced treatments the Gaussian form of 
Maxwell's equations overflowing with c's—but no explanation is ever given as to why the speed of light 
should occur in relationships between electric and magnetic fields, or between magnetic fields and 
currents. The absurdity of this situation must surely strike even the least perceptive student, for, as 
Maxwell wryly relates in the quotation that opens this essay, the only role of light in the measurement of 
electric and magnetic parameters is to permit experimenters to see their instruments! 
 
 Why then should there be any surprise that Maxwell's equations yield electromagnetic waves 
propagating at the speed of light?  In the first case (SI) one has simply contrived to make 1 ε0 µ0 = c , 
and in the second case (Gaussian) an abundance of c's were inserted explicitly by hand at the outset.  
Students learning the subject from a modern textbook may well be excused if they are not impressed.   
 
 But I, who learned this marvelous result directly from Maxwell, was impressed indeed.  To 
appreciate the fact that Maxwell's theory makes an extraordinary prediction, and not merely renders what 
is inserted beforehand, one must first understand how electric charge and current are measured—and I 
know of no account better than Maxwell's.   
 
 "The only systems of any scientific value," Maxwell states in his Treatise, "are the electrostatic 
and the electromagnetic systems."   
 
 According to the first (esu) system, a unit of charge is operationally defined by Coulomb's law:  
Two point charges q attracting or repelling one another with a force F of 1 dyne at a distance d of 1 cm 
each comprise 1 esu of charge.   From F = q2 d 2  and its equivalence to mass ×  acceleration, the 
dimension of charge, expressed in terms of the fundamental quantities of mass [M], length [L], and time 
[T], is readily seen to be 
 
  q[ ]esu = M 1/2L3/2T −1⎡⎣ ⎤⎦  . (1) 
 
 It is not electric charge, however, but electric current that is primary in magnetism and 
consequently the basis for the second (emu) system of units.  In this case the unit of current is 
operationally established by Ampère's law:  Equal currents I in two straight segments of wire of length l 
and separation d attract or repel one another with a force F = I 2l d .  It then follows that current has the 
dimension of the square root of force, or 
  
  I[ ]emu = M 1/2L1/2T −1⎡⎣ ⎤⎦  . (2) 
 
In the emu system charge is a secondary quantity obtained by measuring the passage of current over a 
period of time; thus 
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  q[ ]emu = I[ ]emu T[ ] = M 1/2L1/2⎡⎣ ⎤⎦ . (3) 
 
 Eqs (1) and (3) illustrate that the two systems of units are incompatible, leading to designations of 
the same quantity (electric charge) that differ not only in their magnitude, but also in their dimensions.  
The number of esu units of charge that make up one emu unit of charge thus takes the form of a velocity 
 
  qesu qemu  = k LT −1⎡⎣ ⎤⎦ = k v[ ]  (4) 
 
where the numerical factor k is a universal constant to be determined experimentally. 
 
 It is often quite surprising to those who encounter this basic feature of electromagnetism for the 
first time—and there are many, I suspect, who, not having read Maxwell, never encounter it.   From 
primary education upward one learns to express measurable quantities in different systems of units—for 
example, to convert between cgs and mks measures of mass, length, volume, speed, etc. by a simple 
relocation of the decimal point.  Those unfortunate enough to have been brought up in the English system 
of units learn to convert between feet and miles, pints and quarts, bushels and pecks, ounces and pounds, 
etc.  But, so long as mechanical quantities only are involved, the conversion, however awkward, is simply 
a matter of a dimensionless numerical factor.  A metre and a yard are both measures of length, and both 
have the dimension of length.  Not so in electromagnetism; an esu of charge has an entirely different 
dimension from an emu of charge. 
 
 Unlike the SI parameters, the conversion factor k[v]  is not just a "pencil and paper affair" (to 
borrow the expression of Nobelist Percy Bridgeman), but is amenable to direct measurement—and 
Maxwell, who, like Newton and Fresnel, was thoroughly conversant with experiment, described in his 
Treatise at least four ways to measure it.  Of these, the method due to Weber and Kohlrausch is especially 
simple in principle.   
 
 A Leyden jar was charged with a certain quantity of electricity, determined in electrostatic 
measure as the product of the capacitance (C) of the jar and the potential difference (V) between its 
coatings.  C was ascertained beforehand by comparison with the capacitance of a metal sphere suspended 
in an open space away from other bodies.  In the esu system the capacitance of a sphere is given by its 
radius, and thus C for the Leyden jar could be expressed as a certain length.   Correspondingly, V was 
measured by connecting the coatings to the terminals of a calibrated electrometer.  The two measurements 
thus furnished qesu  =  CV .  The jar was subsequently discharged through the coil of a galvanometer.  The 
transient current caused a small magnet to rotate, and from its extreme angular deviation the quantity of 
charge qemu  was deduced from the appropriate formula.  The ratio of the two charges was found to be k = 
3.1074 ×108  m/s.   
 
 By the time Maxwell composed his Treatise, he was aware of at least three direct measurements 
(in m/s) of the speed of light:  3.14 ×108  (by Fizeau), 2.98 ×108  (by Foucault), and 3.08 ×108 (by 
measurement of aberration and the Sun’s parallax); and three measurements of the ratio of electric units 
(likewise in m/s): 3.11×108  (by Weber), 2.82 ×108  (by Thomson), and 2.88 ×108  (by Maxwell, 
himself).6  Although Maxwell was not a person to jump to conclusions, I am nevertheless struck by the 
subdued expression of his satisfaction: 
 

“It is manifest that the velocity of light and the ratio of the units are 
quantities of the same order of magnitude.  Neither of them can be said to 

                                                
6 J. C. Maxwell, Treatise, Vol 2, p 436. 
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be determined as yet with such a degree of accuracy as to enable us to 
assert that the one is greater or less than the other.  It is to be hoped that, 
by further experiment, the relation between the magnitudes of the two 
quantities may be more accurately determined.” 

 
Any other scientist who had just deduced from theory one of nature’s fundamental constants might well 
have become jubilant, if not euphoric.   Consider, for contrast, Einstein’s response to a question of what 
he would have done if Eddington’s close, but hardly precise, measurement of the gravitational bending of 
starlight did not bear out the general relativistic prediction:  “Then I would feel sorry for the good Lord.  
The theory is correct.”  In any event, thus was impressed upon Maxwell the association of 
electromagnetic waves and light.   
 
 The system-dependent dimensions of charge have consequences for every electrical and magnetic 
quantity:  current, potential, permittivity, permeability, resistance, capacitance, inductance, and more—
and especially for the various electromagnetic fields.  Within the esu system, the electric field E is 
defined by the force law F = qE .  Correspondingly, the force F = I l × B  on a current-carrying wire of 
length l can be used to define the magnetic induction B within the emu system7.  Since the dimension of 
force [MLT −1]  is that of mass ×  acceleration irrespective of the nature of the force, one has q[ ]esu E[ ]esu  
=  I[ ]emu B[ ]emu L[ ] =  q[ ]emu B[ ]emu v[ ] ,  or 
 
  E[ ]esu  = B[ ]emu  = M 1/2L−1/2T −1⎡⎣ ⎤⎦  . (5) 
 
From the definitions of the fields and their interrelationships through Maxwell's equations, one can 
establish that each field (E, D, B, H) in the emu system is related to the corresponding field in the esu 
system by a velocity.  For example, from Maxwell's expression of Faraday's law of induction it follows 
that Bemu  = k v[ ] Besu .  
  
 Now in the formulation of the Maxwell equations, one is free to chose any system of units, so 
long as relations are expressed consistently.  In the Gaussian system, for example, E is expressed in the 
esu system and B is expressed in the emu system, and the factor k[v]  enters each field equation as a 
conversion factor to maintain this consistency.  The resulting wave equation (whose form is independent 
of the system of units) for a medium with permittivity  and permeability µ —both constants being 
dimensionless numbers in the Gaussian system—leads to a phase velocity  u = k εµ  that contains not 
the speed of light c, but rather the universal constant k giving the number of esu's of charge to one emu of 
charge.  The fact that k turns out by measurement to have the same numerical value as c is wondrous 
indeed, and strongly supports the belief that light is a form of electromagnetic wave.  But nowhere is c 
built into Maxwell's equations at the outset, as one might infer from modern textbooks.   
 
 In the calculation that Maxwell himself made, the phase velocity of the resulting wave equation 
took the form u = 1 εµ .  For vacuum (or air, to good approximation), the esu values of the material 
parameters are ε = 1,  µ = 1 k2 , whereas the emu values are just the reverse.   
 
 What is the best system of electromagnetic units to use?  That depends on one's needs.  I have 
always found the Gaussian system particularly suitable for theoretical analysis, for it manifests the 
intrinsic symmetry of Maxwell's equations, an especially attractive feature in light of relativity theory 
                                                
7The magnetic induction can also be defined in terms of the Lorentz force on a moving charged particle.  Maxwell 
did not refer to the Lorentz force, which was introduced after his death.  Rather, he defined B and H in terms of the 
force on a hypothetical unit magnetic pole, a construct that as far as we know, still has no realisation in nature.   
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(unknown, of course, to Maxwell working in the 1860's).  Thus, a phenomenon interpretable in terms of B 
in one inertial reference frame may be ascribed to the effect of E in another inertial frame.  Since E and B 
are intimately related by a Lorentz transformation, it is physically significant that they have the same 
dimensions, as indicated in Eq. (5).   On the other hand, the Gaussian system is not particularly 
convenient for practical work.   
 
 The reader might be interested to learn that Maxwell played a significant part in establishing the 
familiar set of electromagnetic units used in the laboratory—and he discussed this, too, in his Treatise.  If 
one adopts the standard metric units of length (cm or m), time (sec), and mass (g or kg), then the units of 
resistance and electromotive force are too small to express laboratory measurements conveniently, and the 
units of charge and capacitance are correspondingly too large.  The system of practical units (volt, ohm, 
farad, coulomb...) was initially based on selection of a unit of length of 107  m (the length of a quadrant of 
a meridian of the earth, according to Maxwell8) and a unit of mass of 10−14  kg.  It is to achieve this 
convenience of scale, therefore, that the familiar, yet mysterious, constants ε0  and µ0  are inserted into 
the fundamental equations, dimensional consistency requiring that 1 ε0 µ0 = c . 
 
The “Electrotonic State” and Maxwell’s Perspicacious Insight 
 
 Students and physicist colleagues have occasionally asked me why the electromagnetic fields are 
designated by their particular letters.  I have seen letters to editors of various physics journals also pose 
this question from time to time.  In a few cases the choice is self-evident, as in E for electric field and D 
for displacement field.  But what is one to make of B and H for magnetic fields?  Is there some 
scientifically significant language (Latin, Greek, German, French, ...) for which the names of these fields 
correlate with the choice of symbol?   I suspect not, but speculate instead that Maxwell simply designated 
all his electromagnetic variables in an alphabetical order: A (vector potential), B (magnetic induction), C 
(electric current), D (displacement), E (electric field: Maxwell's electromotive intensity), F (mechanical 
force), H (magnetic field: Maxwell's magnetic force), etc.  If so, herein lies another significant insight 
into Maxwell's thinking—an insight that until recent times has largely been lost in modern presentations 
of the subject. 
 
 That the first letter of the alphabet is assigned to the vector potential is not, I believe, an arbitrary 
choice, but signifies instead the signal importance which Maxwell attached to this function.  A is the 
mathematical embodiment of what Faraday, in his qualitative but perceptive reasoning, had termed the 
"electrotonic state", a "peculiar electrical condition of matter" whereby an isolated circuit remains 
unaffected by a constant electromagnetic field, but produces a current if the same state of the field were 
brought into existence suddenly.  "The whole history of this idea in the mind of Faraday," Maxwell wrote,  
 

"...is well worthy of study.  By a course of experiments, guided by 
intense application of thought, but without the aid of mathematical 
calculations, he was led to recognise the existence of something which 
we now know to be a mathematical quantity, and which may even be 
called the fundamental quantity in the theory of electromagnetism.."  
(The italics are my own, not Maxwell's.)   
 

 To Maxwell this fundamentality lay in the distinct dual purposes A served in the dynamical 
theory of the electromagnetic field.  First, he introduced A as the potential function (hence the name: 
vector potential) from which the magnetic induction was obtained by B = curlA , in analogy to a scalar 
magnetic potential of which H was the gradient.  Later in the Treatise, upon investigating induction in a 
secondary circuit by current changes in a primary circuit, Maxwell showed that A—termed at that point 

                                                
8 J. C. Maxwell, Treatise, Vol. 2, p 268. 
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the "electrokinetic momentum"—was related to the time integral of the electric field.  In this capacity A 
not only determined an induced electric field by the relation E = −∂A c∂ t  (in the Gaussian system), but 
was also interpretable as a linear momentum of the electromagnetic field which could be communicated 
to a charged particle in the secondary circuit if the primary current were suddenly stopped.  This dual 
significance of A, as both a potential and a form of momentum, was to have profound implications in the 
quantum theory of matter and electromagnetic fields. 
 
Potentials, Fields, Forces, and Measurements 
 
 In the form of Maxwell's theory that one presently encounters, condensed and simplified by 
Heinrich Hertz and Oliver Heaviside with full employment of the vector analysis of Willard Gibbs, it is 
the four electromagnetic fields, not the electromagnetic potentials, that are conceptually fundamental. The 
fields are regarded as physically real, for they are directly related to observable forces.  The vector and 
scalar potentials, by contrast, are merely auxiliary functions from which these fields are determined by 
derivative operations.  The potentials, unlike the forces, are not unique, but can be modified by a so-called 
gauge transformation9 that leaves Maxwell's equations and the force laws invariant.   
 
 The 20th century discovery that electrons have wavelike properties, however, has brought to light 
(no pun intended) an unexpected physical possibility, the implications of which lend strong support to 
Maxwell's own views of the interpretation and fundamentality of the vector potential.  Is there any way 
the state of motion of a charged particle passing through a region of space where A is non-vanishing, but 
E and B are strictly null, can be influenced?  To this question classical physics yields an unequivocally 
negative answer, for under such circumstances there can be no force on the charged particle.  
Nevertheless, as recognized first by British electron microscopists W. Ehrenberg and R. E. Siday10 in 
1949, and independently by quantum theorists D. Bohm and Y. Aharonov11 ten years later, such a 
phenomenon is indeed conceivable.  
 
 The Aharonov-Bohm or AB effect, as it is known today, entails the modification of an electron 
self-interference pattern by passage of a coherently split electron "wave" round (but not through) an 
excluded region of space within which is confined a magnetic field B (as illustrated in Figure 1).  In the 
figure, the magnetic field is produced by an ideally infinitely long solenoid perpendicular to the page; the 
only electromagnetic influence at the location of a moving electron is the external vector potential A.  
Quantum theory predicts—and a number of independent experiments have confirmed12—that the fringes 
of the electron interference pattern received on a distant screen should be shifted by the angle α  = Φ Φ0  
relative to the pattern for B = 0, where  
 
                                                
9A gauge transformation of electromagnetic potentials consists of the following.  From a given pair of vector and 
scalar potentials A, V( )  one constructs a new pair ′A , ′V( )  by means of an arbitrary gauge function Λ(x, t ) : 
′A = A +∇Λ;  ′V = V − ∂Λ c∂t .  For the case of fields coupled to charged particles, as treated within the 

framework of quantum mechanics, a gauge transformation also entails a unitary transformation of the particle wave 
function.  See, M. P. Silverman, A Universe of Atoms, An Atom in the Universe, (Springer, NY, 2002) pp. 334-342. 
10W. Ehrenberg and R. E. Siday, "The Refractive Index in Electron Optics and the Principles of Dynamics", Proc. 
Phys. Soc. (London) B62 (1949) 8-21 
11Y. Aharonov and D. Bohm, "Significance of Electromagnetic Potentials in the Quantum Theory", Phys. Rev. 115 
(1959) 485-491 
12See, for example, N. Osakabe et. al., "Experimental Confirmation of the Aharonov-Bohm Effect Using a Toroidal 
Magnetic Field Confined by a Superconductor", Phys. Rev. A34 (1986) 815.  In this experiment the desired field 
configuration is achieved with a toroidal ferromagnet covered with a superconducting outer layer.  The Meissner 
effect expels the magnetic flux from the layer thereby confining it to the toroidal interior.  See M. P. Silverman, 
Quantum Superposition: Counterintuitive Consequences of Coherence, Entanglement, and Interference (Springer, 
NY, 2008) pp 11-21 and 239-246 
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Φ = A ⋅ds = B ⋅dS∫∫!∫  (6) 

 
is the magnetic flux through the excluded domain, and Φ0 = hc / e  = 3.9 ×10−9  gauss-cm2 is the quantum 
unit of magnetic flux, or fluxon.  The contour of 
the line integral of A in Eq. (6) can be any closed 
path round the excluded domain connecting the 
points of electron emission and detection.   
 
 The startling nature of the effect is 
illustrated in the displaced fringe pattern of the 
figure which indicates a value of B such that no 
electrons at all are received in the forward 
direction (i.e. along the optic axis).  From a 
classical perspective, the trajectories of the 
electrons seem to have been shifted despite the 
absence, under the circumstances, of any Lorentz 
magnetic force.  Quantum mechanics, however, 
does not permit us to think of electron trajectories  
in the context of an interference experiment.  
Correspondence with classical physics is 
established by the fact that the overall beam, as defined by the single-slit diffraction envelope (and not the 
two-slit interference pattern), is unaffected by the isolated magnetic field.   
 
 As an atomic and nuclear physicist I have given much thought to the implications and novel 
experimental extensions of the AB effect, which I have discussed in some of my books13.  Concerning the 
fundamental quantities of electrodynamics, however, one can say the following.  Although the AB fringe 
shift is dependent on the confined magnetic flux Φ—which, according to Eq. (6), can be expressed in 
terms of either A or B—the derivation of the AB effect, indeed the fundamental starting point for treating 
all electromagnetic interactions of a quantum particle, begins with potentials, not fields or forces.  It is the 
vector potential A and scalar potential V that enter the Lagrangian and Hamiltonian formulations of 
quantum mechanics that prescribe the time-evolution of a quantum system.  A in particular occurs in 
association with the canonical linear momentum p in expressions that reveal its dual role as both a 
potential and momentum-like quantity—as, for example, in the Hamiltonian operator 
 

  H  = 
1

2m
p −

q
c
A⎛

⎝
⎞
⎠

2

+V  (7) 

 
of a single non-relativistic charged particle.   It is worth noting in this regard that it was Maxwell who 
introduced Hamiltonian ideas (based on energy and potential) into electrodynamics, thereby sidestepping 
methods based on force which would have required detailed knowledge of the electromagnetic medium 
(aether) and nature of electric charge (electron).  Maxwell, it should be remembered, knew nothing of the 
electron, whose discovery in 1897 took place well after his death in 1879. 
 
 A question that frequently arises, especially in view of the AB effect, is whether or not the vector 
potential is a measurable quantity.  Maxwell, I believe, certainly thought so, as he associated it with a 
transferable linear momentum.  In quantum mechanics quantities designated as "dynamical 
observables"—i.e. accessible to measurement—must satisfy two requirements.  First, they must be 
representable by Hermitian (i.e. self-adjoint) operators, since these have real-valued eigenvalues, and the 
                                                
13M. P. Silverman, And Yet It Moves: Strange Systems and Subtle Questions in Physics, (Cambridge, NY, 1993); 
More Than One Mystery: Explorations of Quantum Interference, (Springer, NY, 1995); also see footnotes 9 and 12. 
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outcome of measurement can only be expressed by real numbers.14  And second, they must be invariant to 
a gauge transformation, since the latter is analogous to selecting a local coordinate system, and the 
outcome of a physical measurement can not depend on  the arbitrariness of such a choice.   Since A and V 
are not gauge invariant, they are not, strictly speaking, measurable.  In electrostatics, for example, it is 
always a potential difference, ΔV , that is measured. 
 Having said this, however, it is important to note that a gauge transformation is not entirely 
arbitrary, for the result of any such transformation must not change the physical presence of the magnetic 
field B = curlA .  Now any vector field can be decomposed into transverse and longitudinal components 
defined by A = A⊥ +A||  such that divA⊥   = 0  and  curlA!   = 0 .  The actual decomposition takes the form 
 

  A⊥ = 1
4π

∇× ∇×
A ′r( )d 3 ′r
r − ′r∫

⎛
⎝⎜

⎞
⎠⎟

 (8a) 

 

  A|| =−
1
4π

∇
′∇ ⋅A ′r( )d 3 ′r
r − ′r∫  , (8b) 

 
and one can show with a little effort that the sum of Eqs. (8a) and (8b) does indeed reduce to A(r).  A 
gauge transformation modifies only the component , leaving the component  and the physical field 
B = curl  unchanged.  The transverse part of the vector potential is a measurable quantity. 
 
Confirmation of Light as an Electromagnetic Wave 
 
 Maxwell did not live to see the confirmation of his greatest prediction—the existence of 
electromagnetic waves—which was demonstrated experimentally by Heinrich Hertz in 1889, some ten 
years after Maxwell's death.  Hertz's investigations are ingeniously simple and of profound significance—
an inspiration to anyone who, like me, takes pleasure in small-scale table-top experiments.  And yet I can 
not recall ever seeing a discussion of these seminal experiments in any of the optics or electrodynamics 
textbooks from which I have studied or taught.  Fortunately, early in my career I picked up for a pittance a 
collection of Hertz's papers15 in a secondhand bookshop, and have had the pleasure of following Hertz's 
thoughts and actions in his own words.  
 
 Hertz, interestingly enough, did not set out to find electromagnetic waves.  On the contrary, his 
investigations were initially motivated by an entirely different objective brought to his attention by his 
mentor, the leading German physicist Hermann von Helmholtz.    Hertz writes: 
 

 "The general inducement was this.  In the year 1879 the Berlin Academy 
of Science had offered a prize for research on the following problem:—
To establish experimentally any relation between electromagnetic forces 
and the dielectric polarisation of insulators—that is to say, either an 
electromagnetic force exerted by polarisations in non-conductors, or the 
polarisation of a non-conductor as an effect of electromagnetic 
induction." 

                                                
14One might inquire why a complex number—in effect, a coupled pair of real numbers—can not serve as a 
measurement outcome.  The answer is that two measurements would be required to furnish the two numbers, and the 
order of these observations would matter, since quantum measurements are not, in general, commutative.   
15Henrich Hertz, Electric Waves, (Dover, NY, 1962), an unabridged republication of the work first published in 
1893 by Macmillan and Company.  Quotations in the text are taken from the Introduction, pages 1-20, and from his 
papers, "On the Finite Velocity of Propagation of Electromagnetic Actions", p. 109, and "On Electromagnetic 
Waves in Air and Their Reflection", p. 136. 
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 The term "polarisation" here has no bearing on light, but refers instead to the separation of 
electrical charge (although, again, it must be remembered that in 1879 discrete units of electrical charge 
were still unknown).   In brief, the focus of attention of the Berlin Academy, and ultimately of Hertz, was 
on Maxwell's predicted displacement current, the existence of which was by no means generally accepted 
at the time even in Britain, let alone in Germany.    Representable (in the Gaussian system) by a density 
 

  Jd =
1
4π

∂ ε E( ) ∂ t  (9) 

 
dependent exclusively on the temporal variation of a neutral "substance" (the electric field), the 
displacement current raised troublesome questions concerning the nature of electricity and the closure of 
electrical circuits.    
 
 According to Eq. (9), one might be able to detect the effects of a displacement current in an 
insulator if he had the means to generate rapidly oscillating electric fields.  In this endeavour Hertz had 
good fortune, for in the collection of physical instruments at the Technical High School at Karlsruhe, 
where he carried out his investigations, he had earlier found—and used for lecture purposes—a pair of so-
called Riess or Knochenhauer spirals.  The discharge of a small Leyden jar through one of the spirals, 
Hertz discovered, amply sufficed to produce sparks in the other, "provided it had to spring across a spark 
gap."  Upon optimising conditions, he eventually succeeded "in obtaining a method of exciting more 
rapid electric disturbances than were hitherto at the disposal of physicists."   Thus did Hertz auspiciously 
embark upon his researches. 
 
 But the work did not proceed well—i.e. as Hertz 
hoped it would.  Actually, it proceeded only too well, although 
he did not at first recognise it.  Having a means of generating 
rapidly oscillating electric sparks between the terminals of a 
spark gap in a primary circuit, Hertz attached to each terminal 
a conducting plate, inserted between the two plates an 
insulator, and endeavoured to determine the effect of the 
insulator on electrical oscillations induced between the gap of 
a separate loop antenna as schematically shown in Figure 2.   
 
 The expectation was that "when the block was in place 
very strong sparks would appear in the secondary, and that 
when the block was removed there would only be feeble 
sparks."  The basis for this expectation was that electrostatic 
forces—forces derivable from a potential and which ordinarily 
diminish rapidly with distance from the source—could not 
induce sparking in a nearly closed secondary circuit (since 
their integral over a nearly closed contour ought to be 
vanishingly small).  Any sparking, therefore, would have to 
be induced by the displacement current in the dielectric block.  
But this was not what occurred. "The experiment," Hertz 
wrote, "was frustrated by the invariable occurrence of strong 
sparking in the secondary conductor" whether the insulator 
was present or not. 
 
 Gradually it became clear to Hertz that he was not dealing with static or quasi-static fields, as had 
been commonly the case among electrical investigators up to that time, but with a field of such high 
frequency that only the laws of a true electrodynamics would be applicable.  "I perceived that I had in a 
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sense attacked the problem too directly," Hertz concluded somewhat understatedly.  More importantly, he 
also perceived that the particular problem of the Academy, which till then had served as his guide, could 
be approached in an entirely different and more productive way.  Since air—and indeed empty space—
according to Maxwell's theory ought to behave like all other dielectrics, there was no need really to look 
for the effects of the displacement current generated in a solid dielectric.  A more worthy and attainable 
goal, Hertz decided, would be to look for the direct transmission of an electrical signal through the air and 
to measure its rate of propagation. 
 
 The rest, as one says, is history.  
Connecting a powerful induction coil to a spark gap 
between two large square brass conducting plates 
(providing capacitance), Hertz probed the presence 
of a transmitted field at various distances along a 
horizontal baseline perpendicular to the gap and the 
plane of the plates (Figure 3).   Employing as his 
detector a circular or square loop antenna with spark 
gap resonant with the primary circuit, Hertz records, 
"I was able to observe the sparks [in the antenna] 
along the whole distance (12 metres) at my 
disposal, and have no doubt that in larger rooms this 
distance could be still farther extended."   At any 
given distance, however, the induced sparking could 
be terminated by rotating the antenna; indeed it is 
part of the ingenious simplicity of the experiment 
that, not only did Hertz detect the transmission of 
electromagnetic waves, but he simultaneously 
confirmed their transverse polarization by 
appropriately orienting the plane of the secondary 
circuit.  "The reason is obvious:" Hertz wrote of the 
cessation of sparking, "the electric force is at all points perpendicular to the direction of the secondary 
wire."   
 
 There remained the intriguing question of the speed of propagation of these newly discovered 
waves.  To this end, Hertz modified his apparatus, adding an additional brass plate parallel to, and a short 
distance behind, one of the original plates, and extending from that plate a long straight copper wire 
parallel to the baseline.  The wire passed through the window of his laboratory for a distance of some 60 
metres and ended freely in the air.  By passing one of his tuned loop antennas nearby along the length of 
the wire, Hertz observed the periodic increase and decrease of sparking characteristic of a standing wave 
pattern.  From the electrical properties of the primary circuit he estimated the period of oscillation to be 
0.14 ns, later shown by Poincaré to be an overestimate by ! 2 .  Placing paper riders at the nodal (no-
sparking) positions on the wire, Hertz determined a wavelength of 2.8 m.  Dividing the wavelength by the 
corrected period of 0.10 ns led to a wave velocity of 2.8 × 108 m/s.  With evident satisfaction and 
pleasure, Hertz concluded 
 

"...it is clear that the experiments amount to so many reasons in favour of 
that theory of electromagnetic phenomena which was first developed by 
Maxwell from Faraday's views.  It also appears to me that the hypothesis 
as to the nature of light which is connected with that theory now forces 
itself upon the mind with still stronger reason than heretofore.  Certainly 
it is a fascinating idea that the processes in air which we have been 
investigating represent to us on a million-fold larger scale the same 
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processes which go on in the neighbourhood of a Fresnel mirror or 
between the glass plates used for exhibiting Newton's rings."16 
 

What more can one say? 
 
 Actually, there is one more thread to Hertz's story that must be mentioned, an ironic and 
adventitious twist of fate such as occurs rarely, but nevertheless does occur.  Shortly after devising his 
system of producing rapid electrical oscillations, but before he could apply it to the examination of 
displacement current in insulators, Hertz had first to free himself from an earlier and somewhat frustrating 
investigation.    
 

"Soon after starting the experiments I had been struck by a noteworthy 
reciprocal action between simultaneous electrical sparks.  I had no 
intention of allowing this phenomenon to distract my attention from the 
main object which I had in view,"  
 

he lamented,  
 

"but it occurred in such a definite and perplexing way that I could not 
altogther neglect it.  For some time, indeed, I was in doubt whether I had 
not before me an altogether new form of electrical action-at-a-distance."   
 

 The puzzling effect that riveted Hertz's attention was the apparent diminution in intensity of the 
spark in his loop antenna when nonconducting materials (glass, paraffin, ebonite,...) were interposed 
between it and the primary oscillator.  This shielding effect persisted irrespective of the distance between 
the two circuits.   By contrast, coarse metal gratings, which in principle are excellent electrostatic screens, 
showed no shielding effect at all.   
 
 After groping in the dark (somewhat literally as well as metaphorically), Hertz established that it 
was absorption of the ultraviolet component of the light from the primary spark that degraded the 
intensity of the induced spark; reciprocally, the ultraviolet light from the secondary spark sustained the 
spark of the primary circuit when the latter was adjusted sufficiently close to misfiring.   
 
 Hertz, who died in 1884, never understood the implications of these observations, experiments 
undertaken as a side study to the more important task set by the Berlin Academy.  He had discovered, in 
fact, the photoelectric effect—and therefore, even before his definitive confirmations of the existence of 
electromagnetic waves, had provided the first (albeit unrecognised) experimental evidence of the granular 
nature of light. 
  
 

                                                

16H. Hertz, Electric Waves, op. cit. p. 136 


